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Based on the linearized long-wave equation, two new analytical solutions are obtained 
respectively for the propagation of long surface gravity waves around a conical island 
and over a paraboloidal shoal. Having been intensively studied during the last two 
decades, these two problems have practical significance and are physically revealing for 
wave propagation over variable water depth. The newly derived analytical solutions 
are compared with several previously obtained numerical solutions and the accuracy 
of those numerical solutions is discussed. The analytical method has the potential to 
be used to find solutions for wave propagation over more natural bottom topographies. 

1. Introduction 
When a tsunami (usually of very long wavelength) is propagating over waters of 

variable depth, it may be greatly amplified due to the variation of water depth. Among 
various problems on wave propagation over variable water depth, two well-known 
ones have been most intensively studied since the early 1970s due to their physical and 
practical significance. However, to the authors’ knowledge, the analytical solutions of 
these two problems have not yet been found. The two problems are: 

(i) Scattering of waves by a conical island. It has been studied by, among many 
others, Lautenbacher (1970), who derived an integral equation for this problem and 
then solved it numerically, Smith & Sprinks (1975), who used this problem as an 
example to demonstrate the mild-slope equation and compared their results with 
Lautenbacher’s (1970), and Shen & Meyer (1968), who discussed edge waves around 
conical islands which is an analogue of the edge waves occurring in one-dimensional 
sloping beaches (Eckart 1951). Islands of this shape may represent some realistic ones, 
such as the Hawaii Islands studied by Lautenbacher (1970) and the gravity platforms 
in the Arctic studied by Sarpkaya & Isaacson (1981). It is of great concern to ocean 
engineers how large wave runs-ups can be built up at the coastline of an island, as a 
consequence of refractive focusing or resonance of virtually trapped waves (Eckart 
1950; Longuet-Higgins 1967). 

(ii) Propagation of waves over a submerged paraboloidal shoal. Upon introducing 
the mild-slope equation, Berkhoff (1972) gave a first numerical solution for this 
problem. Since then, similar problems have been studied by a number of authors, e.g. 
Ito & Tanimoto (1 972), who additionally conducted some laboratory experiments, 
Bettess & Zienkiewitz (1977), who found that one of their solutions for long waves was 
quite different from Berkhoff’s (1972) in a certain part of the wave field, Radder (1979), 
who applied the parabolic equation method to study short waves, and Kirby & 
Dalrymple (1983), who used a nonlinear model to study wave-jump in the vicinity of 
caustics. 

This paper is aimed at demonstrating a widely applicable approach to analytically 
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solve the linearized long-wave equation, for axisymmetric sea bottom topographies. 
The analytical solutions to this simplified equation are not only useful checks on the 
results from more complicated models in long-wave range, but also of great practical 
significance since they provide realistic simulations of long waves occurring in many 
circumstances (Mei 1989); diffraction, refraction as well as other physical properties 
can be better understood. Therefore, the new analytical solutions are a significant 
supplement to the existing ones (see e.g. a classical solution by Homma 1950, and more 
recently, an analytical solution by Zhu & Zhang 1994). 

In the next section, such an approach is outlined for general cases of axisymmetric 
sea bottom topographies. Then, as examples to demonstrate its usefulness, two new 
analytical solutions are shown in & 3  and 4 respectively for the propagation of long 
surface gravity waves around a conical island and over a paraboloidal shoal. Our 
analytical solutions are compared with several previously obtained numerical solutions 
and the accuracy associated with these numerical solutions is discussed. The main 
findings in this paper are briefly summarized in the last section. 

2. Mathematical theory and solution technique 
In the following discussion, the ocean water is assumed to be inviscid and 

incompressible. Let the origin of a Cartesian coordinate system O(x, y, z) be placed in 
the mean water surface and the z-coordinate increases vertically upwards. A train of 
plane monochromatic waves of small wave steepness is propagating over waters of 
variable depth h(x, y). Furthermore, we assume that the flow associated with the wave 
motion is irrotational and the wavelength is long compared to the water depth. Thus 
there exists a velocity potential @(x,y, z, 7). Upon assuming the fluid motion to be time 
harmonic and linearizing the problem, the time-independent part of the water elevation 
q(x, y )  satisfies the long-wave equation 

(1) 
w2 

g 
V * ( h V q ) + - q  = 0, 

where V is the horizontal gradient operator, w is the angular frequency and g is the 
gravitational acceleration. Time-dependent variables (such as the water elevation and 
velocity potential) are all proportional to exp (-ion), where i = 1/ - 1 and T is the time 
variable . 

The governing differential system also includes some no-flow conditions along solid 
boundaries if necessary and Sommerfeld’s radiation condition to ensure the energy 
associated with the scattered waves propagates towards infinity without being reflected 
back. 

With a horizontal characteristic lengthscale, L,, being adopted to non- 
dimensionalize any horizontal variable with lengthscale, L, and the incident wave 
amplitude, A, being adopted to non-dimensionalize any vertical variable with 
lengthscale (such as q), i.e. by letting 

the dimensionless version of (1) now reads 

where p2 = w2Ls/g. In (3) and hereafter, all the primes denoting dimensionless 
quantities are dropped for simplicity. 

If the sea-bottom contours are axisymmetric with respect to the z-axis, it is 
convenient to adopt a cylindrical coordinate system ( r ,  8, z) with x = r cos 8 and 

L‘ = L/L,, k = kL,, q’ = q / A ,  (2) 

V.(hVq)+pu2q = 0, (3) 
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FIGURE 1 
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. A definition sketch: plane long waves scattered by a conical island. 

y = r sin 8. In this special case, h is a function of r only and a solution to (3) can be 
constructed via the separation of variables as 

m 

7 = R,(r)cosnB, 
n=o 

with RJr)  satisfying 

(4) 

hr2Ra + (r2h’ + hr) R i  + (,u2r2 -n2h) R, = 0, (5) 
in which the primes denote derivatives with respect to r. Equation (5) is a second-order 
ordinary differential equation with variable coefficients; in two special cases where h is 
of the form h = 1P with 1 being a constant and 01 being equal to 2 and 1 respectively, 
solutions to ( 5 )  have been found by Homma (1950) (for a circular island mounted on 
a paraboloidal shoal) and by Zhu & Zhang (1994) (for a circular island mounted on 
a conical shoal) in terms of simple elementary or Bessel functions. 

For a general axisymmetric bottom topography with h being a polynomial function 
of r (or able to be expanded in a series of polynomial functions), a series solution 
(Taylor series or Frobenius-type series) can be attempted. However, one may 
encounter great difficulty in such an attempt if the domain of interest contains some 
points at which the series solution does not converge. According to Frobenius’ theory 
(Spiegel 1981), if Rn(r) is expanded at a non-singular or regular singular point r = rl ,  
the series solution and its derivatives converge for all complex r such that lr--rl1 < R 
where R is the distance from r = rl to the nearest singularity (other than r = rl). 
Therefore a crucial step is to find an expansion point (either non-singular or regular 
singular) such that the convergent circle encompasses the domain of interest. To 
achieve this, suitable mappings can be employed ; their search, though, sometimes can 
be quite difficult. Furthermore, a good choice of expansion point may also substantially 
simplify the solution procedure. We shall now demonstrate the above qualitative 
outline of the general approach utilizing two examples. 

3. Scattering of plane long waves by conical islands 
Let us consider a train of plane long waves propagating along the negative x- 

direction and being scattered by a conical island standing in an open sea of constant 
depth (see figure 1). If the characteristic lengthscale L, (see (2)) is chosen as the radius 
of the island at the free surface, a, then in the region with variable water depth 
(1 < r < b/a)  we have h = y(r -  1) (see figure 1) and therefore ( 5 )  becomes 

r2(r- 1) R:+r(2r- 1) Ri+(v2r2-n2r+n2) R ,  = 0, (6) 
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where v2 = p2/y  = ki(b/a- l), and ko is the dimensionless wavenumber in the 
constant-depth region r 2 b/a.  

For a similar island, Zhu & Zhang (1994) found an analytical solution in terms of 
Bessel functions of fractional order. However, to avoid difficulties associated with the 
singularity introduced due to the water depth being zero at the coastline, they placed 
a vertical wall along the coastline, which is a common approach adopted by many 
authors (e.g. Homma 1950; Vastano & Reid 1966; Christiansen 1975). With no wall 
being located at the coastline and the water depth being assumed to be zero there, 
searching for an analytical solution becomes much more difficult. 

Now, if we assume that the water depth at the coastline is zero and the waves are not 
steep enough to break, an appropriate boundary condition to be imposed along the 
coastline of the island r = 1 (see Mei 1989) is 

ac limh- = 0, 
r+1 ar 

dRn which amounts to limh- = 0. 
r-1 dr 

(7) 

To utilize this boundary condition conveniently, we choose the expansion point at 
r = 1, which is a regular singular point of (6). From Frobenius' theory, Frobenius' 
series solution converges for Ir - 11 < 1. On the other hand, the domain under concern 
(the region with variable water depth) is 1 ,< r < b/a, which may not lie in the 
convergent region of the series. To ensure the domain of interest lies within the 
convergent region, a mapping 

t = 1-l/r, (8) 
is constructed. Under this transformation, (6) becomes 

d'R, dR 
dt2 dt 

t(l-t)3-+(l - t )3~+(n2f2 -n2 t+v ' )Rn  = 0, (9) 

and the domain of interest is now mapped into 0 < t < 1 -a/b.  It should also be 
noticed that the original expansion point r = 1 has been mapped onto t = 0, which is 
a regular singular point of (9). From Frobenius' theory, a series solution of the form 

with a,,n being unity and the constant c to be determined by the so-called indicia1 
equation, converges for It1 < 1. On the other hand, since 1 -a /b  < 1, the convergent 
region of the series solution now contains the mapped domain of interest as a 
subdomain. A series solution which converges throughout the region of variable water 
depth has been successfully constructed. After substituting (10) into (9) and collecting 
terms of the same order of t ,  we have 

c = 0 (double repeated roots), (1 1) 
ul, = - v2, (12) 
= h(v - 3v2 + n2), (1 3 )  

- [3(m + 2)' - v'] a,,,, - [3(m + 1)' -n2] a,,,, + (m' -n2) a,, ,, 
(m + 3)2 %+a, n - 9 

m = 0 , 1 , 2  ,.... (14) 
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Since the indicia1 equation has double repeated roots, there is only one particular 
solution in the form of the Frobenius' series (10). Another linearly independent 
particular solution contains logarithmic terms (Spiegel 198 1) which clearly violate the 
boundary condition (7), and therefore should be excluded from the final solution. 
Consequently, in the region with variable water depth, the general solution reads 

m 

R,(r) = A ,  a,,,, ,(1- = A ,  R,(r), 
m-0 

and from (4), the water elevation is given by 
m 

TI(', 0) = x A ,  R,(r) cos no, 
a-0 

in which the constants A, are yet to be determined. 

Fuchs 1954) and can be written as 
In the constant-depth region (r 2 b/a),  the solution is well-known (MacCamy & 

4, 

q2(r, e) = 7; + 7: = C [( - i)%, J,(ko r) + C, HF)(ko r)] cos no, (17) 

in which 7;,7: are the incident and scattered waves respectively, J, is the Bessel 
function of the first kind of order n, H r )  is the Hankel function of the second kind of 
order n, and E ,  is the Jacobi symbol (E, = 1 for n = 0 and E ,  = 2 for n > 0). The 
constant coefficients C, in (17) are also to be determined. 

The solutions in the two regions must be matched on the common boundary 
r = b/a = ro to ensure the continuity of wave heights and flow fluxes across it, i.e. 

n-0 

3% - a72 71 =q2, ---. ar ar 

Therefore from (16)-(18), the coefficients A, and C,, can be determined as 

A , = (  

A =  

2s,( -i),+l 
A ,  =-  

nr,A ' (19) 

in which RJr)  was defined in (15), and the primes denote derivatives with respect to 
the arguments. The water elevation at the coastline of the island r = 1 is 

m 

[&l = [71Ir-1 exp (- iw7) = exp (- im) x A, cos no, (23) 
n-0 

and the normal velocity there is 

where x = -igw-'a,, , = hay-'. Comparing (23) with (24) reveals 

ur = ~ [ d l r - 1 ,  
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which can be recovered directly from the long-wave equation (3) with h -+ 0 and is a 
well-known result. Equation (25) indicates that the normal velocity is proportional to 
the wave run-up at the coastline of the island. Unlike the case that an island is 
surrounded by a vertical wall, where the normal velocity vanishes, the normal velocity 
in the case being studied here is usually very large (especially for large value of x), 
because the wave run-up at the coastline is usually very large. This will be demonstrated 
quantitatively in the following discussion. 

Zhu & Zhang (1994) showed, in their analytical solution for long waves scattered by 
a circular island mounted on a conical shoal, that the wave amplitudes and phase are 
only dependent on a dimensionless geometric parameter b/a  and a dimensionless 
wavelength A,/b (A, is the wavelength of incident waves). For the problem discussed 
in this section, one can reach exactly the same conclusion: that is to say, the final 
solution only depends on the values of b/a and A,/b. However, fixed values of b/a 
and A,/b can lead to infinitely many combinations of the water depth h, and wave 
period T. 

The same problem studied here was solved numerically by Lautenbacher (1 970), who 
used the conical island to represent three individual Hawaiian islands (Hawaii, Oahu 
and Small). He recast the problem into an integral equation which was then solved 
numerically. Since double integrals were involved in his calculation, the approach 
seems to be very laborious. Smith & Sprinks (1975) also used the same example to 
demonstrate the mild-slope equation but only presented the results for the long-wave 
equation. They obtained an asymptotic solution near the coastline of the island and 
calculated the far-field solution via an integral equation method. Their method is a 
little simpler than Lautenbacher’s (1970) since only single integrals were involved in the 
calculation. However, it suffers from a drawback that the location of the ‘far field’ is 
somehow ambiguous. Furthermore, only the first seven terms (‘modes’) in the 
asymptotic expansion were calculated, which may not be adequate. 

The numerical results calculated from the analytical solution presented in this paper 
were compared with those shown in the papers by Lautenbacher and by Smith & 
Sprinks. A computer program was written to evaluate the double-series solution (1 6) 
(the power series &(r) and the Fourier series (1 6)) numerically. To calculate the power 
series,R,(r), terms were summed till convergent results were obtained. It should be 
emphasized here that through the carefully constructed mapping (8), the convergence of 
our series solution (16) is guaranteed. As far as the speed of convergence is concerned, 
for larger values of r, &(r) converges less rapidly. But even for the most difficult 
numerical calculation presented in this paper (when r = b/a), converged results (within 
an error of 0.00000001 %) were obtained with no more than 200 terms required at the 
expense of virtually zero CPU time on a SUN 4/470 Sparc Server. On the other hand, 
the Fourier series (16) converges much faster; no more than twenty terms (‘modes’) 
was found to be sufficient for all of the numerical calculations presented in this paper. 
The overall numerical efficiency is reflected by the fact that it took only 24 CPU 
minutes to calculate the relative amplitudes and the wave phases (presented in figures 
3 and 4 respectively) at about 10000 points in the physical domain. 

Shown in figure 2 ( e c )  are the dimensionless maximum wave amplifications around 
the coastline of the island, obtained respectively from the analytical solution, 
Lautenbacher’s integral equation solution and Smith & Sprinks’ asymptotic solution. 
For smaller b/a (such as Hawaii and Oahu), Lautenbacher’s results exhibit a 
reasonable agreement with the analytical solution whereas large discrepancies were 
found in most cases between the analytical solution and Smith & Sprinks’ solution. The 
discrepancies are thought to be the consequence of the insufficient number of terms 



New solutions for the propagation of long water waves 397 

0 40 80 120 160 

Coast position 
(measured in degrees around island centre) 

FIGURE 2. Comparison between the analytical solution presented in this paper (solid line), Smith & 
Sprinks’ solution (dashed line), and Lautenbacher’s solution (circles). (a) Hawaii (b /a  = 1.67); 
(b)  Oahu ( b / a  = 4); (c) Small (b /a  = 4.65). 

that have been included in their calculation. Furthermore, the discrepancies between 
the analytical solution, Lautenbacher’s solution and Smith & Sprinks’ solution 
deteriorate as b / a  is increased (figure 2c), suggesting that a fine; discretization for a 
larger shelf region is needed with Lautenbacher’s method and large truncation errors 
have been produced with Smith & Sprinks’ method (actually, they have pointed out the 
asymptotic series might converge so slowly that its applicability might be restricted to 
a small distance from the coastline). 

A detailed view of the analytical solution for Small Island is presented in figures 3 
and 4, in which the equal-value contours of relative wave amplitudes and the phase of 
7 (equivalent to wave fronts) are shown respectively. Wave amplitudes are found to be 
small except in the vicinity of the coastline (see figure 3), suggesting that there is a 
concentration of wave energy, especially at the front face of the island. It is possible 
that waves have been almost trapped near the coastline of the island in this case 
(Longuet-Higgins 1967). 

To examine wave amplifications in the shelf region as a response to the wave 
frequency, we followed Smith & Sprinks (1975) to plot in figure 5 the response curve 
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FIGURE 3. Equal-value contour lines of relative amplitudes around a conical island 
(b/a = 4.65, A, = 1.57b). 
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FIGURE 4. Equal-value contour lines of phase of 7 (i.e. wave front) around a conical island 
(b/u = 4.65, A, = 1.57b). 

of lAnl as a function of the dimensionless wave frequency o(a/g)1/2 for the first five 
modes (n = 0-4) for the same conical island used for their figure 5. One can clearly see 
how large the wave amplitude can be built up at a certain frequency, especially for 
higher modes, due to the mechanism of refractive focusing (Eckart 1950). Also shown 
in this figure are the resonance frequencies predicted for the edge waves with zero 
seaward mode number using a short-wave asymptotic solution by Smith (1974). On 
comparing figure 5 with figure 5 in Smith & Sprinks’ (1975) paper, it was found that 
the resonance frequencies predicted by the long-wave equation are very close to those 
by the mild-slope equation, though the values of IA,I may differ. For the particular 
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FIGURE 5. Frequency dependence of the amplitude factors A ,  for a conical island used in an 
experiment by Barnard et al. (7 = O.l,b/a = 20); x , resonance frequencies for edge waves obtained 
by Smith (1974). 

geometry used for their figure 5, the first significant resonance (say, mode 3) occurs at 
short wavelength for which the long-wave approximation is violated, as pointed out by 
Smith & Sprinks (1975); however, exactly the same patterns of resonances as in figure 
5 can occur with long waves over shallower water since the constant depth h, and the 
wave period T can be varied in a certain way without any effects on the final solution, 
as stated before. 

It should be emphasized here that different boundary conditions with or without a 
vertical wall located at the coast result in quite different responses near the coast. For 
the geometries studied by Homma (1950), Vastano & Reid (1966), Zhu & Zhang (1994) 
and others, the islands were surrounded by a vertical wall where the water depth is non- 
zero. Consequently, in the case studied by them, the normal velocity must vanish at the 
coastline, whereas in the case studied in this section, there is a large gradient of wave 
amplitudes in the vicinity of the island (cf. figure 6b). Hence one expects much larger 
wave amplifications and a large normal velocity (which has been shown to be 
proportional to the wave run-up at the coastline) near the island for boundary 
conditions of sloping beach type. Such an expectation is indeed confirmed by figure 
6(a, b), in which the analytical solution for Oahu with the assumption of zero water 
depth at the coastline is compared with that for a similar island presented by Zhu & 
Zhang (1994) with the same values of b/a  and A,/b but with the assumption of non- 
zero water depth at the coastline. Wave amplitudes obtained from the boundary 
condition of sloping beach type are generally well above those from the boundary 
condition of vertical wall type in the neighbourhood of the island. By virtue of the 
linearized Lagrange equation, the dynamic pressure is proportional to the water 
elevation ; therefore the above discussion suggests that a conical island without a 
vertical wall located at the coastline usually bears a much larger maximum dynamic 
pressure. 
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FIGURE 6.  Comparison of relative amplitudes between a conical island (solid line) and an island-shelf 
system (dashed line) ( b / a  = 4, h,/b = 2): (a) along the shoreline of the island; (b) along the direction 
of incident waves (0 = 0). 

4. Refraction of plane long waves by a paraboloidal shoal 
Refraction of plane waves over a paraboloidal shoal (figure 7) has been studied 

either numerically or experimentally by many researchers (Berkhoff 1972; Fokstra & 
Berkhoff 1977; Radder 1979; Panchang, Cushman-Roisin & Pearce 1988; Zhu 1993). 
However, the analytical solutions have never been presented before ; numerical results 
were often compared with each other. Therefore this problem is ideal to be our second 
example. 

Consider a train of plane long waves propagating along the x-direction and being 
refracted by the shoal. Owing to the shoaling of the water depth towards the centre of 
the shoal, the waves may be greatly amplified. At first glance, it seems that no 
diffraction is present, but the results from ray theory (geometric optics) reveals that 
wave rays converge to form caustics in the lee region of the shoal where diffraction 
effects are significant. 

In this problem, the radius of the shoal, a, is chosen as the characteristic lengthscale, 
L,. In the region with variable water depth r < 1, we have h = h,(l +Br2) with 
/3 = (h, - h,)/h,, and therefore (5) reads 

r2( 1 +/3rz) R i  + (3Br3 + r)  Rk + (v2r2 -pn2r2 - nz) R, = 0, (26) 

or 
d2R, 
dt2 

t2((t+ 1)-+t(2t+ R, = 0, 

where t = Pr2, v2 = (1 + B) k:, and k, is the dimensionless wavenumber in the constant- 
depth region. Unlike the conical island discussed in the previous section, there is no 
boundary condition imposed in the region of variable water depth. Instead, the 
condition that water elevation must be finite at the origin must be imposed. To readily 
make use of this condition, the origin, which is a regular singular point of (26) (or (27)), 
is chosen as the expansion point. From Frobenius’ theory, the series solution converges 
for It1 < 1, which may or may not include the domain of concern (i.e. the region of 
variable water depth 0 < t < p). However, we can employ two ‘shift’ and one 
‘mapping’ transformations to ‘move’ the domain of interest into the convergent 
region of the series solution. Upon successive transformations with respect to the 
independent variable t: 

u =  1 + t ,  s =  1/24, u =  1-s, (28) 
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FIGURE 7. A definition sketch: refraction of plane waves over a parabolic shoal. 

the domain of interest is mapped successively to: 1 < u < 1 +By 1/(1 +B) < s < 1, 
0 < u < p/(1 +p) (< l), and (27) becomes 

(29) ~ ' ( 1  -u)'-+v(~ d2Rn - v ) " + ( v ~ v / ~ / ~ - ~ ~ ~ ) R ~  dRn = 0. 
du2 dv 

The final independent variable v has a relation with the original independent 
variable T 

and therefore r = 0 has been mapped onto v = 0, which is still a regular singular point 
of (29). Thus Frobenius' series solution of the form 

Q) 

R,(v) = C am,nvm+C 
m-0 

with ao, , being unity, converges for 1111 < 1, which encompasses the mapped domain of 
interest (v E (0, ,8( 1 + /3)-')). 

Upon substituting (31) into (29) and collecting terms of the same order of v, one 
obtains 

c = kin, (32) 
a',, = (2c2-v2/4p)[(c+ 1)2-+22]--1, (33) 

Since the two roots of the indicia1 equation (c = +in) differ by an integer, the 
corresponding two particular solutions become linearly dependent. However, it can be 
proved (Spiegel 198 1) that another independent particular solution [aR,(u, c)/ac],,,,, 
contains lnv which is singular at v = 0. Therefore the general solution in this region is 
just 

with c = :n, and the water elevation 
00 

TI@, 6) = X A ,  l?,(r) cos no, 
n-0 



402 Y. Zhang and S.  Zhu 

/,-,, / / ,  / /  

-1 I 

-34 -17 0 17 34 

Y (km) 
FIGURE 8. Comparison of relative wave amplitudes between the analytical solution in this paper (solid 
line), and the solutions of Berkhoff (dashed line), Bettess & Zienkiewitz (triangles), and Zhu (circles) 
for a paraboloidal shoal with = 79,h,/a = 4.32. (a) y = 0; (b)  x = 0. 

in which the coefficients A, can be determined by matching the solution in this region 
with that in the region of constant water depth. Since now the incident waves travel 
along the x-direction instead of the negative x-direction, the general solution in the 
constant-depth region can be written as 

m 

vz(r ,  0)  = 7; + = C [in€, J,(ko r )  + C, HF)(k, r ) ]  cos no, 
n-0 

where H t )  denotes the Hankel function of the first kind of order n. The coefficients A, 
and C, are then determined by matching the solutions in the two regions as 
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xla 

FIGURE 9. Equal-value contour lines of relative amplitudes around a paraboloidal shoal 
(/3 = 79, A,/u = 4.32). 

where &(r) has been given in (35) and the prime denotes derivatives with respect to the 
arguments. Consequently, the motion at the origin is simply 

[CJr=, = 4, exp ( - iwd. (39) 
Similar to the case studied in the previous section, the analytical solution is expressed 

in terms of a geometric parameter ,8( = (h, - h,)/h,) and a dimensionless wavelength 
h,/a. The constant water depth h, is a free parameter. 

Numerical solutions for this problem have been presented by Berkhoff (1972) and 
Bettess & Zienkiewitz (1977). However, there is a large discrepancy between their 
solutions, especially near the centre of the shoal. Recently, the same problem was also 
solved with the dual-reciprocity boundary element method by Zhu (1993), who found 
his solution was in close agreement with Bettess & Zienkiewitz’s solution near the 
centre of the shoal but in close agreement with Berkhoff’s solution near the edge of the 
shoal. Having obtained the analytical solution, we can discuss the accuracy associated 
with these numerical solutions. 

Dimensionless wave amplitudes calculated from different models along two sections 
y = 0 and x = 0 across the shoal are shown in figures 8 (a)  and 8 (b) respectively. From 
these figures, it can be seen that Zhu’s solution is in excellent agreement with the 
analytical solution presented in this paper; Bettess & Zienkiewitz’s solution is close to 
the analytical solution along the line of symmetry ( y  = 0) but is less accurate along the 
direction perpendicular to the line of symmetry, especially near the edge of the shoal. 
For Berkhoff’s solution, substantial deviation from the analytical solution near the 
centre of the shoal is observed. Such a large discrepancy may be due to the relatively 
coarse grids used in his calculation. 

To give a closer view of the entire wave field, the contour lines of the dimensionless 
wave amplitude and the phase of g (wave fronts) are presented in figures 9 and 10 
respectively. A large gradient of wave amplitude variation is observed at the front face 
of the shoal whereas the largest amplitude is found in the lee region, suggesting strong 
diffraction effects there. In the same time, wave fronts are refracted towards the centre 
of the shoal, as shown in figure 10. 
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FIGURE 10. Equal-value contour Lines of phase of 7 (i.e. wave front) around the paraboloidal 
shoal (j3 = 79, A,/a = 4.32). 
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FIGURE 1 1 .  Response over the shoal for different values of j3 and Ao/a. (a) A,/a = 4.32, j3 = 4 (dashed 
line), j3 = 15 (solid line), j3 = 79 (dotted line); (b) Ao/a = 3.49, j3 = 1 (dashed line), /l= 2.5 (solid line), 
,9 = 20 (dotted line). 

The concentration of wave energy in a certain region and the large response in the 
lee region in this case can be attributed to the combined refraction and diffraction 
effects. For a shoal with small /3 (i.e. a flatter shoal), both the refraction and diffraction 
are weak and thus one expects an almost even distribution of wave heights across the 
shoal. On the other hand, for a rather peaked shoal (such as the example shown above) 
there is more refractive focusing, as can be demonstrated with the conventional ray 
theory. Furthermore, owing to a more rapid variation of seabed, diffraction effects also 
become stronger on the lee side of the shoal (Mei 1989). These possibilities are 
confirmed by figure 1 1 (a, b), in which the wave amplitudes over the shoal along the line 
of symmetry are shown for different values of /3 and h,/a. For small the maximum 
wave amplitude occurs at the front face of the shoal. As /3 is increased, the location of 
the maximum wave amplitude moves towards the centre of the shoal, passes it, and 
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then continues to move into the lee region. Associated with this process is a gradual 
concentration of wave energy into a region where the maximum wave amplitude 
occurs, as a consequence of refractive focusing. Furthermore, comparing figure 11 (a) 
with 11 (b) reveals that diffraction effects are more significant for waves of shorter 
period. 

5. Conclusions 
In this paper, a widely applicable approach to solving analytically long-wave 

propagation over waters of variable depth has been demonstrated using two combined 
refraction and diffraction problems as examples. Generally speaking, a Frobenius 
series solution can be constructed in the region of variable water depth, even for a more 
general bottom topography, as long as it is axisymmetric. However, appropriate 
transformations may need to be constructed so that the convergent region of the series 
lies within the region of interest. Such transformations are the key to a successful 
solution. 

An analytical solution for long waves scattered by a conical island standing in an 
open sea of constant depth was presented in $3. After comparing the results obtained 
with and without a vertical wall located at the coastline, we found an island without 
a vertical wall located at the coastline induced much stronger wave amplifications near 
the coastline; waves are more trapped there. 

Combined refraction and diffraction effects were discussed with our second analytical 
solution for long-wave propagation over a submerged paraboloidal shoal presented in 
$4. The effects were found to be dependent on both the wave frequency and the amount 
of protrusion of the shoal; as the shoal becomes more and more protruded, the 
location of the maximum wave amplitude moves towards the lee region of the 
shoal, and at the same time, there is a gradual concentration of wave energy into a 
region where the maximum wave amplitude occurs, as a consequence of refractive 
focusing. Furthermore, these phenomena become more obvious for shorter-period 
waves. 

We have also taken advantage of the newly derived analytical solutions in discussing 
the accuracy of several previously presented numerical solutions in the literature. The 
results of our comparison can be summarized as follows. 

(i) A comparison of two numerical solutions due to Lutenbacher (1972) and Smith 
& Sprinks (1975) for long waves scattered by a conical island with the newly derived 
analytical solution, showed that the results from both numerical solutions are not very 
satisfactory especially for waves of comparatively short periods or for an island with 
a large shelf region. 

(ii) For long waves over a paraboloidal shoal, there are several numerical solutions 
which are quite different from each other. The dispute on which solution is the most 
accurate one was finally terminated by the newly obtained analytical solution. We 
concluded that Zhu’s (1993) solution is the most accurate one; Bettess & Zienkiewitz’s 
(1977) solution is reasonably close to the analytical solution except in certain regions 
near the edge of the shoal, and Berkhoff’s (1972) solution is erroneous near the centre 
of the shoal. 

The authors wish to thank Mr Pornchai Satravaha and Mr Peter Tritscher for their 
help in drawing figure 2. Originally, owing to the formidable computational effort 
required in calculating the numerical results for the second analytical solution in this 
paper, access to a supercomputer was kindly provided by the Australian Institute of 
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solution (presented in this paper) was obtained and a supercomputer was no longer 
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